The theorem states that for any prime p and any number aā{1,...pā1}a \in \{1, ... p-1\}aā{1,...pā1} we have that apā1ā”1Ā modĀ p.a^{p - 1} \equiv 1 \text{ mod }p.apā1ā”1Ā modĀ p.
RSA starts off with two primes, ppp and q.q.q.
We have N:=pqN:= pqN:=pq and a number eee such that gcd(e,(pā1)(qā1))=1.\text{gcd}(e, (p - 1)(q-1)) = 1.gcd(e,(pā1)(qā1))=1. Our private key is d:=eā1(mod(pā1)(qā1))d:= e^{-1}(\text{mod} (p - 1)(q - 1))d:=eā1(mod(pā1)(qā1))
Last updated 4 years ago